
Lecture 9 - The Curious Case of 
Discontinuities

A Puzzle...

Electron Jelly

Imagine a sphere of radius a filled with negative charge of uniform density, the total charge being equivalent to 

that of two electrons. Assume that two protons are embedded in this jelly, and further suppose that, in spite of their 

presence, the negative charge distribution remains uniform. Where must the protons be located so that the force on 

each of them is zero? 

(This is a surprisingly realistic caricature of a hydrogen molecule; the magic that keeps the electron cloud in the 

molecule from collapsing around the protons is explained by quantum mechanics!)

Solution

Recalling Gauss’s Law, the electric field at a distance r ≤ a from the center of the jelly sphere (which has charge 

density ρ = -
2 e

4

3
π a3

) equals E 4 π r2 =
1
ϵ0


4
3
π r3 ρ or equivalently 

E =
r ρ

3 ϵ0
(1)

A proton at a distance r would feel the force Fjelly = E e =
r ρ e

3 ϵ0
 pulling it towards the center of the jelly. To have 

stable equilibrium, the other proton must also be at a distance r on the same diameter as the first proton, but in the 

opposite direction. The repelling force between the two protons equals Fproton =
k e2

(2 r)2
. Equilibrium occurs when 

Fjelly = Fproton, which allows us to solve for r, 
r ρ e

3 ϵ0
=

k e2

(2 r)2

r e

3 ϵ0

2 e
4

3
π a3

=
k e2

(2 r)2

r3

a3 =
1
8

r =
a

2

(2)

In retrospect, this factor of 1
2

 is clear. If all of the -2 e electron charge were located in a point charge at the center, 

it would provide a force on one of the protons that is 8 times the force due to the other proton (because the other 

proton is twice as far away, and half as big). So the forces will balance if we reduce the effective electron charge 

by a factor of 8. This is accomplished by reducing the effective radius of the jelly by a factor of 2. □ 

Advanced Electrostatics Problems

An Infinite Sheet

Example
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An infinite sheet with uniform charge density σ lies in the x-y plane. What is the electric field E at all points in 

space?

Solution

We have built up a lot of mathematical machinery, so let’s solve this problem in four different ways:

◼ Gauss’s Law: Exploit symmetry and use ∫ E ·ⅆa =
Qenc

ϵ0
 to determine the electric field of the sheet

◼ Coulomb’s Law: Consider the sheet to be comprised of uniformly charged rods, whose electric field we found 
in the last lecture is Erod =

λ

2 π ϵ0 r
r
. Using Coulomb’s Law and the Principle of Superposition (E = ∫

k ⅆq

r2 r
), add 

up the electric fields of all the rods to determine the electric field from the sheet

◼ Coulomb’s Law: The Principle of Superposition says that we can break up our charge distribution however we 
want, which grants us a lot of flexibility. Consider the sheet to be comprised of small patches of area (ⅆx ⅆy) in 
Cartesian coordinates and sum up the electric field from each patch

◼ Coulomb’s Law: Cartesian coordinates are sometimes not the optimal coordinate system. Consider the sheet to 
be comprised of small patches of area (r ⅆ r ⅆθ) in polar coordinates and sum up the electric field from each 
patch

Method 1

By reflection symmetry, the electric field from the sheet must point in the z-direction, and by translational symme-

try it can only depend upon the distance z from the sheet and not on the Cartesian coordinates x or y. In other 

words, E = E[z] z
 for z > 0, and by symmetry E = -E[z] z

 for z < 0.

We can exploit this symmetry by considering an (imaginary) cube with side length 2 s that is split in two by the 

plane. As shown below, ⅆa
  for this cube points in the x- or y-directions for four of the cube’s faces (the ones that 

get intersecting the x-y plane), whereas ⅆa

= z
 for the top face and ⅆa


= -z

 for the bottom face.

Out[ ]=

Since E points in the z-direction, the surface integral ∫ E ·ⅆa will be zero over the four faces intersecting the x-y 

plane. For the top face of the cube, ∫ E ·ⅆa = ∫ (E[z] z

) · z


ⅆa = ∫ E[z] ⅆa. Similarly, for the bottom face 

∫ E ·ⅆa = ∫ (-E[z] z

) · -z


ⅆa = ∫ E[z] ⅆa. Therefore, Gauss’s Law yields

Qenc

ϵ0
= ∫ E · ⅆa = 2 ∫top face

E[z] ⅆa = 2 E[z] ∫top face
ⅆa = 2 E[z] (2 s)2 (3)

where we have used the fact that the cube has side length 2 s and hence area (2 s)2 on each face. The total charge 

Qenc enclosed by the cube equals the charge of a square of side length 2 s on the x-y plane, which is (2 s)2 σ. 

Substituting this above, we find
(2 s)2 σ

ϵ0
= 2 E[z] (2 s)2 (4)

E[z] =
σ

2 ϵ0
(5)

By exploiting the directionality of E discussed above and using symmetry, we find that the electric field at all 

points in space equals
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E =

σ

2 ϵ0
z


z > 0

0 z = 0
σ

2 ϵ0
(-z


) z < 0

(6)

This is a remarkable result, and we will examine its implications below, but for now, let us verify this answer by 

computing the electric field in other ways.

Method 2

 If we split up the infinite sheet into thin rods of thickness ⅆx running parallel to the y-axis, their charge density 

would equal λ =σ ⅆx. The contribution of the electric field at our point in the z-direction would equal 

ⅆE =
λ

2 π r ϵ0

z

r
 where the last term picks out the z-component. Using r2 = x2 + z2, the total electric field equals

E = ∫-∞
∞ σⅆx

2 π ϵ0

z

x2+z2 = 
σ

2 π ϵ0
ArcTan x

z


x=-∞

x=∞
=

σ

2 ϵ0
(7)

as found above.

Method 3

We can always go back to good-old Coulombs Law! Consider a small patch of the surface at a point (x, y, 0) with 

area ⅆx ⅆy. The magnitude of the electric field at (0, 0, z) from this patch equals ⅆE =
k ⅆq

r2 =
k(σ ⅆx ⅆy)

x2+y2+z2 . By symme-

try, we know that the electric field must point in the z-direction, and hence we only want to pick out its z-compo-

nent, which is k(σ ⅆx ⅆy)

x2+y2+z2

z

x2+y2+z2
1/2 . Integrating over all patches is nasty, but yields the correct solution

E = ∫-∞
∞
∫-∞
∞ k(σ ⅆx ⅆy)

x2+y2+z2
z

x2+y2+z2
1/2 = ∫-∞

∞ 2 k σ z ⅆy

y2+z2 = 2 π k σ =
σ

2 ϵ0 (8)

Method 4

Similar to Method 3, we now integrate over the x-y plane in polar coordinates. The magnitude of the electric field 

at (0, 0, z) from a small patch at a point (r, θ) with area r ⅆ r ⅆθ will be ⅆE =
k ⅆq

r2+z2 =
k(σ r ⅆr ⅆθ)

r2+z2 . By symmetry, we 

know that the electric field must point in the z-direction, and hence we only want to pick out its z-component, 

which is k(σ r ⅆr ⅆθ)

r2+z2

z

r2+z2
1/2 . Integrating over all patches is much nicer in polar coordinates (showing that it often 

helps to exploit symmetry and work in the most convenient coordinate system),

E = ∫0
2 π
∫0
∞ k(σ r ⅆr ⅆθ)

r2+z2
z

r2+z2
1/2 = 2 π k σ =

σ

2 ϵ0 (9)

This quadruply confirms our result! □ 

Let’s take a second to admire this astounding result! No matter how far away you are from the shell, the electric 

field has the value σ

2 ϵ0
 pointing away from the plane. Additionally, no matter how close you come to the plane, 

you still feel the electric field σ

2 ϵ0
 pointing away from the plane. However, if you pass through the plane, the 

electric field will discontinuously change from σ

2 ϵ0
 pointing in one direction to σ

2 ϵ0
 pointing in the opposite direc-

tion! Furthermore, if you are a piece of charge embedded within the sheet, you will feel an electric field of 0 (by 

symmetry), but if you move an infinitesimal distance off the sheet you will feel an electric field of σ

2 ϵ0
.

This type of behavior is only exhibited by infinitely thin sheets of charge. Volume charge distributions create 

continuous electric fields (since the integration in E = ∫
k ρ ⅆx' ⅆy' ⅆz'

r2 r
 smooths out discontinuities in ρ). And lines of 

charges don’t seem as alarming because the electric field goes to ∞ near the line of charge (just like for a point 

charge). So only 2D charge configurations have this bizarre behavior where the electric field is discontinuous but 

stays finite everywhere. 

As stated in the "Field from a Cylindrical Shell, Right and Wrong" section in the previous lecture, a great rule to 

remember about discontinuities in nature is:
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With all discontinuities in nature, the actual value at the discontinuity equals 

the average of the discontinuous values!
(10)

This statement is worth its weight in gold; print it on bumper stickers and share it with the world! You will see it 

come up again and again in physics (from charge distributions) and mathematics (Fourier series).

Intersecting Sheets

Hole in a Shell

Example

Consider a spherical shell of charge, of radius R and surface charge density σ, from which a small circular piece of 

radius b ≪ R has been removed.

Out[ ]=

We know that for a complete spherical sheet (the b = 0 limit), there will be a discontinuity in the electric field 

when we go from just inside to just outside the sphere. Once we remove this infinitesimal cap from the spherical 

shell, will there still be a discontinuity in the electric field? Verify your result.

Solution

Method 1: A clever application of the Principle of Superposition

Imagine that we have a complete spherical shell overlaid with a thin spherical cap of charge density -σ. By the 

Principle of Superposition, this is identical to the above setup. Since we can much more easily determine the 

electric field everywhere for a spherical shell, and at the end of Lecture 6 we determined the electric force (and 

hence the electric field) on the axis of symmetry from a circular sheet of charge (see the Force from a Disk 

example).

For the spherical shell, Gauss's Law easily yields the electric field E = 0 inside the sphere and E =
σ

ϵ0
 pointing 

radially outwards. Now we add the effect of the thin hole, which at the midpoint looks like an infinite plane of 

charge with an electric field σ

2 ϵ0
 pointing towards the plane (since the charge density is -σ). Thus, inside the shell 

the electric field will be 0 +
σ

2 ϵ0
=

σ

2 ϵ0
 pointing outwards and outside the sphere the electric field will be 

σ

ϵ0
-

σ

2 ϵ0
=

σ

2 ϵ0
 pointing outwards. Hence, the electric field is continuous with magnitude σ

2 ϵ0
 across the missing 

spherical cap.

This is an incredible result! By removing an infinitesimal piece of the sheet, we removed the finite discontinuity 

that would have existed if b = 0. Similarly, if an infinite sheet lies on the x-y plane, and you poke a tiny hole 

through it, the electric field will be continuous across this hole.

Method 2: Coulomb’s Law and the Principle of Superposition

We could double check our solution at the point right in the middle of the spherical cap using straight-up integra-

tion. Instead of integrating over the entire sphere. Note that if the aperture has radius b, then θ spans from b

R
 to π.
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Rθ

Note that the distance from the point at angle θ to the middle of the aperture equals 2 R Sin θ
2
 (which can either be 

found through the Law of Cosines or simple geometry). Therefore, the electric field in the middle of the aperture 

(which only has a component in the vertical direction) has magnitude

E = ∫0
2 π
∫b/R

π k R2 Sin[θ]σ

4 R2 Sin θ
2

2 Sin θ

2
 ⅆθ ⅆϕ

=
π k σ

2 ∫b/R

π Sin[θ]

Sin θ
2

ⅆθ

= π k σ ∫b/R

π Cos θ
2
 ⅆθ

= 2 π k σ Sin θ
2

θ=b/R

θ=π

= 2 π k σ 1- Sin b

2 R


(13)

In the limit b ≪ R, Sin b

2 R
 ≈

b

2 R
≈ 0 so that E ≈ 2 π k σ =

σ

2 ϵ0
, as desired. You are highly encouraged to modify 

this calculation to compute the electric field at a distance r = R - ϵ and r = R + ϵ from the origin along the line of 

symmetry of the spherical cap to double check that the electric field is indeed continuous. □ 

A Plane and a Slab

Advanced Section: Maximum Field from a Blob

Advanced Section: Ball in a Sphere

Recommended Problems

This is a list of excellent problems (with solutions) in David Morin’s book.

◼ 1.6 Zero potential energy for equilibrium

Mathematica Initialization
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